Skip to content

vllm.entrypoints.pooling.classify.serving

ClassificationServeContext module-attribute

ClassificationServeContext: TypeAlias = ServeContext[
    ClassificationRequest
]

logger module-attribute

logger = init_logger(__name__)

ServingClassification

Bases: OpenAIServing

Source code in vllm/entrypoints/pooling/classify/serving.py
class ServingClassification(OpenAIServing):
    request_id_prefix = "classify"

    def __init__(
        self,
        engine_client: EngineClient,
        models: OpenAIServingModels,
        *,
        request_logger: RequestLogger | None,
        chat_template: str | None = None,
        chat_template_content_format: ChatTemplateContentFormatOption = "auto",
        trust_request_chat_template: bool = False,
        log_error_stack: bool = False,
    ) -> None:
        super().__init__(
            engine_client=engine_client,
            models=models,
            request_logger=request_logger,
            log_error_stack=log_error_stack,
        )

        self.chat_template = chat_template
        self.chat_template_content_format: Final = chat_template_content_format
        self.trust_request_chat_template = trust_request_chat_template

    async def _preprocess(
        self,
        ctx: ClassificationServeContext,
    ) -> ErrorResponse | None:
        """
        Process classification inputs: tokenize text, resolve adapters,
        and prepare model-specific inputs.
        """
        try:
            ctx.lora_request = self._maybe_get_adapters(ctx.request)

            if isinstance(ctx.request, ClassificationChatRequest):
                error_check_ret = self._validate_chat_template(
                    request_chat_template=ctx.request.chat_template,
                    chat_template_kwargs=ctx.request.chat_template_kwargs,
                    trust_request_chat_template=self.trust_request_chat_template,
                )
                if error_check_ret:
                    return error_check_ret

                _, ctx.engine_prompts = await self._preprocess_chat(
                    ctx.request,
                    ctx.request.messages,
                    default_template=self.chat_template,
                    default_template_content_format=self.chat_template_content_format,
                    default_template_kwargs=None,
                )
            elif isinstance(ctx.request, ClassificationCompletionRequest):
                ctx.engine_prompts = await self._preprocess_completion(
                    ctx.request,
                    prompt_input=ctx.request.input,
                    prompt_embeds=None,
                )
            else:
                return self.create_error_response("Invalid classification request type")

            return None

        except (ValueError, TypeError, jinja2.TemplateError) as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))

    def _build_response(
        self,
        ctx: ClassificationServeContext,
    ) -> ClassificationResponse | ErrorResponse:
        """
        Convert model outputs to a formatted classification response
        with probabilities and labels.
        """
        id2label = getattr(self.model_config.hf_config, "id2label", {})

        items: list[ClassificationData] = []
        num_prompt_tokens = 0

        final_res_batch_checked = ctx.final_res_batch

        for idx, final_res in enumerate(final_res_batch_checked):
            classify_res = ClassificationOutput.from_base(final_res.outputs)

            probs = classify_res.probs
            predicted_index = int(np.argmax(probs))
            label = id2label.get(predicted_index)

            item = ClassificationData(
                index=idx,
                label=label,
                probs=probs,
                num_classes=len(probs),
            )

            items.append(item)
            prompt_token_ids = final_res.prompt_token_ids
            num_prompt_tokens += len(prompt_token_ids)

        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            total_tokens=num_prompt_tokens,
        )

        return ClassificationResponse(
            id=ctx.request_id,
            created=ctx.created_time,
            model=ctx.model_name,
            data=items,
            usage=usage,
        )

    async def create_classify(
        self,
        request: ClassificationRequest,
        raw_request: Request,
    ) -> ClassificationResponse | ErrorResponse:
        model_name = self.models.model_name()
        request_id = f"{self.request_id_prefix}-{self._base_request_id(raw_request)}"

        ctx = ClassificationServeContext(
            request=request,
            raw_request=raw_request,
            model_name=model_name,
            request_id=request_id,
        )

        return await self.handle(ctx)  # type: ignore[return-value]

    def _create_pooling_params(
        self,
        ctx: ClassificationServeContext,
    ) -> PoolingParams | ErrorResponse:
        pooling_params = super()._create_pooling_params(ctx)
        if isinstance(pooling_params, ErrorResponse):
            return pooling_params

        try:
            pooling_params.verify("classify", self.model_config)
        except ValueError as e:
            return self.create_error_response(str(e))

        return pooling_params

chat_template instance-attribute

chat_template = chat_template

chat_template_content_format instance-attribute

chat_template_content_format: Final = (
    chat_template_content_format
)

request_id_prefix class-attribute instance-attribute

request_id_prefix = 'classify'

trust_request_chat_template instance-attribute

trust_request_chat_template = trust_request_chat_template

__init__

__init__(
    engine_client: EngineClient,
    models: OpenAIServingModels,
    *,
    request_logger: RequestLogger | None,
    chat_template: str | None = None,
    chat_template_content_format: ChatTemplateContentFormatOption = "auto",
    trust_request_chat_template: bool = False,
    log_error_stack: bool = False,
) -> None
Source code in vllm/entrypoints/pooling/classify/serving.py
def __init__(
    self,
    engine_client: EngineClient,
    models: OpenAIServingModels,
    *,
    request_logger: RequestLogger | None,
    chat_template: str | None = None,
    chat_template_content_format: ChatTemplateContentFormatOption = "auto",
    trust_request_chat_template: bool = False,
    log_error_stack: bool = False,
) -> None:
    super().__init__(
        engine_client=engine_client,
        models=models,
        request_logger=request_logger,
        log_error_stack=log_error_stack,
    )

    self.chat_template = chat_template
    self.chat_template_content_format: Final = chat_template_content_format
    self.trust_request_chat_template = trust_request_chat_template

_build_response

Convert model outputs to a formatted classification response with probabilities and labels.

Source code in vllm/entrypoints/pooling/classify/serving.py
def _build_response(
    self,
    ctx: ClassificationServeContext,
) -> ClassificationResponse | ErrorResponse:
    """
    Convert model outputs to a formatted classification response
    with probabilities and labels.
    """
    id2label = getattr(self.model_config.hf_config, "id2label", {})

    items: list[ClassificationData] = []
    num_prompt_tokens = 0

    final_res_batch_checked = ctx.final_res_batch

    for idx, final_res in enumerate(final_res_batch_checked):
        classify_res = ClassificationOutput.from_base(final_res.outputs)

        probs = classify_res.probs
        predicted_index = int(np.argmax(probs))
        label = id2label.get(predicted_index)

        item = ClassificationData(
            index=idx,
            label=label,
            probs=probs,
            num_classes=len(probs),
        )

        items.append(item)
        prompt_token_ids = final_res.prompt_token_ids
        num_prompt_tokens += len(prompt_token_ids)

    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        total_tokens=num_prompt_tokens,
    )

    return ClassificationResponse(
        id=ctx.request_id,
        created=ctx.created_time,
        model=ctx.model_name,
        data=items,
        usage=usage,
    )

_create_pooling_params

_create_pooling_params(
    ctx: ClassificationServeContext,
) -> PoolingParams | ErrorResponse
Source code in vllm/entrypoints/pooling/classify/serving.py
def _create_pooling_params(
    self,
    ctx: ClassificationServeContext,
) -> PoolingParams | ErrorResponse:
    pooling_params = super()._create_pooling_params(ctx)
    if isinstance(pooling_params, ErrorResponse):
        return pooling_params

    try:
        pooling_params.verify("classify", self.model_config)
    except ValueError as e:
        return self.create_error_response(str(e))

    return pooling_params

_preprocess async

_preprocess(
    ctx: ClassificationServeContext,
) -> ErrorResponse | None

Process classification inputs: tokenize text, resolve adapters, and prepare model-specific inputs.

Source code in vllm/entrypoints/pooling/classify/serving.py
async def _preprocess(
    self,
    ctx: ClassificationServeContext,
) -> ErrorResponse | None:
    """
    Process classification inputs: tokenize text, resolve adapters,
    and prepare model-specific inputs.
    """
    try:
        ctx.lora_request = self._maybe_get_adapters(ctx.request)

        if isinstance(ctx.request, ClassificationChatRequest):
            error_check_ret = self._validate_chat_template(
                request_chat_template=ctx.request.chat_template,
                chat_template_kwargs=ctx.request.chat_template_kwargs,
                trust_request_chat_template=self.trust_request_chat_template,
            )
            if error_check_ret:
                return error_check_ret

            _, ctx.engine_prompts = await self._preprocess_chat(
                ctx.request,
                ctx.request.messages,
                default_template=self.chat_template,
                default_template_content_format=self.chat_template_content_format,
                default_template_kwargs=None,
            )
        elif isinstance(ctx.request, ClassificationCompletionRequest):
            ctx.engine_prompts = await self._preprocess_completion(
                ctx.request,
                prompt_input=ctx.request.input,
                prompt_embeds=None,
            )
        else:
            return self.create_error_response("Invalid classification request type")

        return None

    except (ValueError, TypeError, jinja2.TemplateError) as e:
        logger.exception("Error in preprocessing prompt inputs")
        return self.create_error_response(str(e))

create_classify async

create_classify(
    request: ClassificationRequest, raw_request: Request
) -> ClassificationResponse | ErrorResponse
Source code in vllm/entrypoints/pooling/classify/serving.py
async def create_classify(
    self,
    request: ClassificationRequest,
    raw_request: Request,
) -> ClassificationResponse | ErrorResponse:
    model_name = self.models.model_name()
    request_id = f"{self.request_id_prefix}-{self._base_request_id(raw_request)}"

    ctx = ClassificationServeContext(
        request=request,
        raw_request=raw_request,
        model_name=model_name,
        request_id=request_id,
    )

    return await self.handle(ctx)  # type: ignore[return-value]