vllm.model_executor.layers.activation ¶
Custom activation functions.
_ACTIVATION_AND_MUL_REGISTRY module-attribute ¶
_ACTIVATION_AND_MUL_REGISTRY = LazyDict(
{
"gelu": lambda: GeluAndMul(),
"silu": lambda: SiluAndMul(),
"geglu": lambda: GeluAndMul(),
"swigluoai": lambda *args,
**kwargs: SwigluOAIAndMul(*args, **kwargs),
}
)
_ACTIVATION_REGISTRY module-attribute ¶
_ACTIVATION_REGISTRY = LazyDict(
{
"gelu": lambda: GELU(),
"gelu_fast": lambda: FastGELU(),
"gelu_new": lambda: NewGELU(),
"gelu_pytorch_tanh": lambda: (
warning_once(
"[ROCm] PyTorch's native GELU with tanh approximation is unstable. Falling back to GELU(approximate='none')."
),
GELU(approximate="none"),
)[1]
if is_rocm()
else GELU(approximate="tanh"),
"relu": lambda: ReLU(),
"relu2": lambda: ReLUSquaredActivation(),
"silu": lambda: SiLU(),
"quick_gelu": lambda: QuickGELU(),
"tanh": lambda: Tanh(),
"sigmoid": lambda: Sigmoid(),
"xielu": lambda: XIELU(),
}
)
FastGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
FatreluAndMul ¶
Bases: CustomOp
An activation function for FATReLU.
The function computes x -> FATReLU(x[:d]) * x[d:] where d = x.shape[-1] // 2. This is used in openbmb/MiniCPM-S-1B-sft.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
GeluAndMul ¶
Bases: CustomOp
An activation function for GeGLU.
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d) return: (batch_size, seq_len, d) or (num_tokens, d)
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
__init__(approximate: str = 'none')
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
forward_xpu ¶
GeluAndMulSparse ¶
Bases: CustomOp
An activation function for GeluAndMulSparse. This activation function is used in Gemma3n. It computes: up_proj = self.up_proj(x) gate_proj = self.gate_proj(x) gate_proj = self._gaussian_topk(gate_proj) # sparsity activations = self.act_fn(gate_proj) # gelu down_proj = self.down_proj(activations * up_proj) Shapes: x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
Source code in vllm/model_executor/layers/activation.py
_gaussian_topk ¶
Get % sparse percentile of the Gaussian distribution.
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
MulAndSilu ¶
Bases: CustomOp
An activation function for SwiGLU.
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
NewGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
QuickGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
ReLUSquaredActivation ¶
Bases: CustomOp
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
Source code in vllm/model_executor/layers/activation.py
ScaledActivation ¶
Bases: Module
An activation function with post-scale parameters.
This is used for some quantization methods like AWQ.
Source code in vllm/model_executor/layers/activation.py
scales instance-attribute ¶
scales = Parameter(
empty(
intermediate_size_per_partition, dtype=params_dtype
)
)
__init__ ¶
__init__(
act_module: Module,
intermediate_size: int,
input_is_parallel: bool = True,
params_dtype: dtype | None = None,
)
Source code in vllm/model_executor/layers/activation.py
forward ¶
weight_loader ¶
weight_loader(param: Parameter, loaded_weight: Tensor)
Source code in vllm/model_executor/layers/activation.py
SiluAndMul ¶
Bases: CustomOp
An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
__init__(*, compile_native: bool = True)
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native staticmethod ¶
PyTorch-native implementation equivalent to forward().
forward_xpu ¶
SwigluOAIAndMul ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
forward_cuda ¶
Source code in vllm/model_executor/layers/activation.py
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
SwigluStepAndMul ¶
Bases: CustomOp
An activation function for SwiGLU with clamping.
Computes x -> silu(x[:d]).clamp(max=limit) * x[d:].clamp(-limit, limit) where d = x.shape[-1] // 2.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
XIELU ¶
Bases: CustomOp
Applies the xIELU activation function introduced in https://arxiv.org/abs/2411.13010 If the user has installed the nickjbrowning/XIELU, we import xIELU CUDA Otherwise, we emit a single warning and use xIELU Python
Source code in vllm/model_executor/layers/activation.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 | |
__init__ ¶
__init__(
alpha_p_init: float = 0.8,
alpha_n_init: float = 0.8,
beta: float = 0.5,
eps: float = -1e-06,
dtype: dtype = bfloat16,
with_vector_loads: bool = False,
)
Source code in vllm/model_executor/layers/activation.py
_xielu_cuda ¶
Firewall function to prevent torch.compile from seeing .item()
Source code in vllm/model_executor/layers/activation.py
_xielu_python ¶
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
Source code in vllm/model_executor/layers/activation.py
_swiglustep_and_mul_kernel ¶
_swiglustep_and_mul_kernel(
o_ptr,
o_stride,
x_ptr,
x_stride,
limit: constexpr,
d: constexpr,
BLOCK_SIZE: constexpr,
) -> None
Source code in vllm/model_executor/layers/activation.py
get_act_and_mul_fn ¶
Get an activation-and-mul (i.e. SiluAndMul) function by name.
Source code in vllm/model_executor/layers/activation.py
get_act_fn ¶
Get an activation function by name.