vllm.model_executor.layers.quantization.utils.fp8_utils ¶
W8A8BlockFp8LinearOp ¶
This class executes a Blocked FP8 linear layer using cutlass if supported and torch.scaled_mm otherwise.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | |
deepgemm_input_quant_op instance-attribute ¶
deepgemm_input_quant_op = (
QuantFP8(
False,
act_quant_group_shape,
column_major_scales=True,
use_ue8m0=use_deep_gemm_e8m0,
)
if is_deep_gemm_supported
else None
)
__init__ ¶
__init__(
weight_group_shape: GroupShape,
act_quant_group_shape: GroupShape,
cutlass_block_fp8_supported: bool = CUTLASS_BLOCK_FP8_SUPPORTED,
use_aiter_and_is_supported: bool = False,
)
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_dispatch_w8a8_blockscale_op ¶
_dispatch_w8a8_blockscale_op(
use_cutlass: bool, use_aiter_and_is_supported: bool
) -> tuple[
Callable[
[Tensor, Tensor, Tensor, Tensor | None], Tensor
],
QuantFP8 | None,
]
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_run_aiter ¶
_run_aiter(
input_2d: Tensor,
weight: Tensor,
weight_scale: Tensor,
input_scale: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_run_cutlass ¶
_run_cutlass(
input_2d: Tensor,
weight: Tensor,
weight_scale: Tensor,
input_scale: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_run_deepgemm ¶
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_run_triton ¶
_run_triton(
input_2d: Tensor,
weight: Tensor,
weight_scale: Tensor,
input_scale: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
apply ¶
apply(
input: Tensor,
weight: Tensor,
weight_scale: Tensor,
input_scale: Tensor | None = None,
bias: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_fp8_gemm_nt_op ¶
_fp8_gemm_nt_op(
q_input: Tensor,
input_scale: Tensor,
weight: Tensor,
weight_scale: Tensor,
output: Tensor,
use_deep_gemm_e8m0: bool,
) -> None
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_fp8_gemm_nt_op_fake ¶
_fp8_gemm_nt_op_fake(
q_input: Tensor,
input_scale: Tensor,
weight: Tensor,
weight_scale: Tensor,
output: Tensor,
use_deep_gemm_e8m0: bool,
) -> None
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_maybe_pad_fp8_weight ¶
Pad the weight tensor. This is an optimization on ROCm platform, which can benefit from tensors located far enough from one another in memory
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_padded_cutlass ¶
_padded_cutlass(
qx: Tensor,
weight: Tensor,
x_scale: Tensor,
weight_scale: Tensor,
block_size: list[int],
output_dtype: dtype,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_padded_cutlass_fake ¶
_padded_cutlass_fake(
qx: Tensor,
weight: Tensor,
x_scale: Tensor,
weight_scale: Tensor,
block_size: list[int],
output_dtype: dtype,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_per_token_group_quant_fp8 ¶
_per_token_group_quant_fp8(
y_ptr,
y_q_ptr,
y_s_ptr,
group_size,
y_num_columns,
y_row_stride,
eps,
fp8_min,
fp8_max,
use_ue8m0: constexpr,
BLOCK: constexpr,
)
A Triton-accelerated function to perform per-token-group quantization on a tensor. This function converts the tensor values into float8 values.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_per_token_group_quant_fp8_colmajor ¶
_per_token_group_quant_fp8_colmajor(
y_ptr,
y_q_ptr,
y_s_ptr,
group_size,
y_num_columns,
y_row_stride,
y_s_col_stride,
eps,
fp8_min,
fp8_max,
use_ue8m0: constexpr,
BLOCK: constexpr,
)
A Triton-accelerated function to perform per-token-group quantization on a tensor. This function converts the tensor values into float8 values.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_silu_mul_per_token_group_quant_fp8_colmajor ¶
_silu_mul_per_token_group_quant_fp8_colmajor(
y_ptr,
y_q_ptr,
y_s_ptr,
M,
N,
y_s_col_stride: int64,
eps,
fp8_min,
fp8_max,
use_ue8m0: constexpr,
GROUP_SIZE: constexpr,
BLOCK_M: constexpr,
BLOCK_N: constexpr,
)
Each thread block (BLOCK_N) computes [BLOCK_M, GROUP_SIZE] act-mul outputs. Then the thread block quantizes the [BLOCK_M, GROUP_SIZE] block of values and fills the outputs tensors at the right positions.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_w8a8_triton_block_scaled_mm ¶
_w8a8_triton_block_scaled_mm(
A,
B,
C,
As,
Bs,
M,
N,
K,
group_n,
group_k,
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_As_m,
stride_As_k,
stride_Bs_k,
stride_Bs_n,
BLOCK_SIZE_M: constexpr,
BLOCK_SIZE_N: constexpr,
BLOCK_SIZE_K: constexpr,
GROUP_SIZE_M: constexpr,
)
Triton-accelerated function used to perform linear operations (dot product) on input tensors A and B with block-wise quantization, and store the result in output tensor C.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 | |
_w8a8_triton_block_scaled_mm_fake ¶
_w8a8_triton_block_scaled_mm_fake(
qx: Tensor,
weight: Tensor,
x_scale: Tensor,
weight_scale: Tensor,
block_size: list[int],
output_dtype: dtype,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
_w8a8_triton_block_scaled_mm_func ¶
_w8a8_triton_block_scaled_mm_func(
qx: Tensor,
weight: Tensor,
x_scale: Tensor,
weight_scale: Tensor,
block_size: list[int],
output_dtype: dtype,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
block_quant_to_tensor_quant ¶
This function converts block-wise quantization to tensor-wise quantization. The inputs are block-wise quantization tensor x_q_block, block-wise quantization scale and the block size. The outputs are tensor-wise quantization tensor and tensor-wise quantization scale. Note only float8 is supported for now.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
create_fp8_input_scale ¶
create_fp8_input_scale(
output_partition_sizes: list[int],
weight_loader: Callable | None,
) -> Parameter
Create input scale parameter for static activation quantization.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
create_fp8_scale_parameter ¶
create_fp8_scale_parameter(
parameter_type: Parameter,
output_partition_sizes: list[int],
input_size_per_partition: int,
block_size: list[int] | None,
weight_loader: Callable | None,
) -> Parameter
Create scale parameter based on quantization strategy.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
create_fp8_weight_parameter ¶
create_fp8_weight_parameter(
output_size_per_partition: int,
input_size_per_partition: int,
weight_loader: Callable | None,
) -> Parameter
Create FP8 weight parameter.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
cutlass_scaled_mm ¶
cutlass_scaled_mm(
A: Tensor,
B: Tensor,
As: Tensor,
Bs: Tensor,
block_size: list[int],
output_dtype: dtype = float16,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
deepgemm_post_process_fp8_weight_block ¶
deepgemm_post_process_fp8_weight_block(
wq: Tensor,
ws: Tensor,
quant_block_shape: tuple[int],
use_e8m0: bool,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
expert_weight_is_col_major ¶
get_w8a8_block_fp8_configs cached ¶
Return optimized configurations for the w8a8 block fp8 kernel. The return value will be a dictionary that maps an irregular grid of batch sizes to configurations of the w8a8 block fp8 kernel. To evaluate the kernel on a given batch size bs, the closest batch size in the grid should be picked and the associated configuration chosen to invoke the kernel.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
input_to_float8 ¶
This function quantizes input values to float8 values " "with tensor-wise quantization.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
is_fp8 ¶
maybe_post_process_fp8_weight_block ¶
maybe_post_process_fp8_weight_block(layer: Module)
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
per_token_group_quant_fp8 ¶
per_token_group_quant_fp8(
x: Tensor,
group_size: int,
eps: float = 1e-10,
dtype: dtype | None = None,
column_major_scales: bool = False,
out_q: Tensor | None = None,
use_ue8m0: bool | None = None,
) -> tuple[Tensor, Tensor]
Function to perform per-token-group quantization on an input tensor x. It converts the tensor values into signed float8 values and returns the quantized tensor along with the scaling factor used for quantization. Args: x: The input tensor with ndim >= 2. group_size: The group size used for quantization. eps: The minimum to avoid dividing zero. dtype: The dype of output tensor. Note that only torch.float8_e4m3fn is supported for now. column_major_scales: Outputs scales in column major. out_q: Optional output tensor. If not provided, function will create. Returns: tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | |
process_fp8_weight_block_strategy ¶
Process weights for block-wise quantization strategy.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
process_fp8_weight_channel_strategy ¶
process_fp8_weight_channel_strategy(
weight: Tensor,
weight_scale: Tensor,
input_scale: Tensor | None = None,
) -> tuple[Tensor, Tensor, Tensor | None]
Process weights for channel-wise quantization strategy.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
process_fp8_weight_tensor_strategy ¶
process_fp8_weight_tensor_strategy(
weight: Tensor,
weight_scale: Tensor,
logical_widths: list[int],
input_scale: Tensor | None = None,
) -> tuple[Tensor, Tensor, Tensor | None]
Process weights for tensor-wise quantization strategy.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
requant_weight_ue8m0_inplace ¶
requant_weight_ue8m0_inplace(
weight: Tensor,
weight_scale: Tensor,
block_size: Sequence[int] = (128, 128),
) -> None
Re-quantise weight so that its per-block scaling factors are in the UE8M0 (power-of-two) format expected by the new DeepGEMM kernels inplace.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
weight | Tensor | Block-quantised weight tensor stored in | required |
weight_scale | Tensor | Corresponding per-block scale tensor ( | required |
block_size | Sequence[int] | 2-element iterable | (128, 128) |
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
silu_mul_per_token_group_quant_fp8_colmajor ¶
silu_mul_per_token_group_quant_fp8_colmajor(
input: Tensor,
output: Tensor | None = None,
use_ue8m0: bool | None = None,
eps: float = 1e-10,
)
silu+mul + block-fp8 quant with group size 128.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
validate_fp8_block_shape ¶
validate_fp8_block_shape(
layer: Module,
input_size: int,
output_size: int,
input_size_per_partition: int,
output_partition_sizes: list[int],
block_size: list[int],
) -> None
Validate block quantization shapes for tensor parallelism.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
w8a8_triton_block_scaled_mm ¶
w8a8_triton_block_scaled_mm(
A: Tensor,
B: Tensor,
As: Tensor,
Bs: Tensor,
block_size: list[int],
output_dtype: dtype = float16,
) -> Tensor
This function performs matrix multiplication with block-wise quantization. It takes two input tensors A and B with scales As and Bs. The output is returned in the specified output_dtype. Args: A: The input tensor, e.g., activation. B: The input tensor, e.g., weight. As: The per-token-group quantization scale for A. Bs: The per-block quantization scale for B. block_size: The block size for per-block quantization. It should be 2-dim, e.g., [128, 128]. output_dytpe: The dtype of the returned tensor. Returns: torch.Tensor: The result of matmul.
Source code in vllm/model_executor/layers/quantization/utils/fp8_utils.py
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 | |