Skip to content

vllm.model_executor.model_loader.reload.utils

__all__ module-attribute

__all__ = [
    "get_layer_tensors",
    "get_layer_params_buffers",
    "get_layer_size",
]

get_layer_params_buffers

get_layer_params_buffers(layer: Module) -> LayerTensors

Get all parameters and buffers of a module as a tuple of dicts.

Source code in vllm/model_executor/model_loader/reload/utils.py
def get_layer_params_buffers(layer: torch.nn.Module) -> LayerTensors:
    """Get all parameters and buffers of a module as a tuple of dicts."""
    return (
        {name: param for name, param in layer._parameters.items() if param is not None},
        {name: buffer for name, buffer in layer._buffers.items() if buffer is not None},
    )

get_layer_size

get_layer_size(layer: Module) -> int

Calculate total number of elements across all tensors in a layer.

Source code in vllm/model_executor/model_loader/reload/utils.py
def get_layer_size(layer: torch.nn.Module) -> int:
    """Calculate total number of elements across all tensors in a layer."""
    return sum(tensor.numel() for tensor in get_layer_tensors(layer).values())

get_layer_tensors

get_layer_tensors(layer: Module) -> dict[str, Tensor]

Get all parameters and buffers from a module as a dict.

Source code in vllm/model_executor/model_loader/reload/utils.py
def get_layer_tensors(layer: torch.nn.Module) -> dict[str, torch.Tensor]:
    """Get all parameters and buffers from a module as a dict."""
    params, buffers = get_layer_params_buffers(layer)
    return params | buffers