vllm.model_executor.models.lfm2_siglip2 ¶
Implementation of Siglip2VisionModel intended to be only used within a vision language model.
Siglip2Attention ¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/lfm2_siglip2.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | |
attn instance-attribute ¶
attn = MMEncoderAttention(
num_heads=num_heads_per_partition,
head_size=head_dim,
scale=scale,
prefix=f"{prefix}.attn",
)
out_proj instance-attribute ¶
out_proj = RowParallelLinear(
input_size=embed_dim,
output_size=embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
disable_tp=use_data_parallel,
)
qkv_proj instance-attribute ¶
qkv_proj = QKVParallelLinear(
hidden_size=embed_dim,
head_size=head_dim,
total_num_heads=num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
disable_tp=use_data_parallel,
)
__init__ ¶
__init__(
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/lfm2_siglip2.py
forward ¶
Source code in vllm/model_executor/models/lfm2_siglip2.py
Siglip2Encoder ¶
Bases: Module
Transformer encoder consisting of config.num_hidden_layers self attention layers. Each layer is a [Siglip2EncoderLayer].
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config | Siglip2VisionConfig | PretrainedConfig | required |
Source code in vllm/model_executor/models/lfm2_siglip2.py
layers instance-attribute ¶
layers = ModuleList(
[
(
Siglip2EncoderLayer(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{idx}",
)
)
for idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
num_hidden_layers_override: int | None = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/lfm2_siglip2.py
forward ¶
forward(
inputs_embeds: Tensor,
cu_seqlens: Tensor,
max_seqlen: int | Tensor,
return_all_hidden_states: bool = False,
) -> Tensor | list[Tensor]
Source code in vllm/model_executor/models/lfm2_siglip2.py
Siglip2EncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/lfm2_siglip2.py
mlp instance-attribute ¶
mlp = Siglip2MLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self_attn instance-attribute ¶
self_attn = Siglip2Attention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__ ¶
__init__(
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/lfm2_siglip2.py
forward ¶
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
hidden_states | Tensor | Input tensor of shape (batch, seq_len, embed_dim). | required |
cu_seqlens | Tensor | Cumulative sequence lengths tensor. | required |
max_seqlen | int | Tensor | Maximum sequence length. | required |
Source code in vllm/model_executor/models/lfm2_siglip2.py
Siglip2MLP ¶
Bases: Module
Source code in vllm/model_executor/models/lfm2_siglip2.py
fc1 instance-attribute ¶
fc1 = ColumnParallelLinear(
hidden_size,
intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
disable_tp=use_data_parallel,
)
fc2 instance-attribute ¶
fc2 = RowParallelLinear(
intermediate_size,
hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
disable_tp=use_data_parallel,
)
__init__ ¶
__init__(
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/lfm2_siglip2.py
forward ¶
Siglip2Model ¶
Bases: Module
Source code in vllm/model_executor/models/lfm2_siglip2.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | |
vision_model instance-attribute ¶
vision_model = Siglip2VisionTransformer(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
require_post_norm=require_post_norm,
prefix=f"{prefix}.vision_model",
)
__init__ ¶
__init__(
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
num_hidden_layers_override: int | None = None,
require_post_norm: bool | None = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/lfm2_siglip2.py
forward ¶
forward(
pixel_values_packed: FloatTensor,
spatial_shapes: LongTensor,
cu_seqlens: Tensor,
max_seqlen: Tensor,
select_layers: list[int] | None = None,
) -> Tensor
Forward pass through the vision model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
select_layers | list[int] | None | Layer indices to select hidden states from. Supports negative indices (e.g., [-2] for second-to-last). If None, returns the last layer output with post_layernorm. Multiple layers can be selected and will be concatenated. | None |
Source code in vllm/model_executor/models/lfm2_siglip2.py
load_weights ¶
Source code in vllm/model_executor/models/lfm2_siglip2.py
Siglip2VisionEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/lfm2_siglip2.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | |
patch_embedding instance-attribute ¶
patch_embedding = Linear(
in_features=num_channels * patch_size * patch_size,
out_features=embed_dim,
)
__init__ ¶
Source code in vllm/model_executor/models/lfm2_siglip2.py
forward ¶
forward(
pixel_values_packed: FloatTensor,
spatial_shapes: LongTensor,
) -> Tensor
Embed patchified pixel values in packed (unpadded) form.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pixel_values_packed | FloatTensor | (1, total_tokens, patch_dim) or (total_tokens, patch_dim), packed in tile order. | required |
spatial_shapes | LongTensor | (num_tiles, 2) on CPU (height, width) per tile. | required |
Returns:
| Type | Description |
|---|---|
Tensor | (1, total_tokens, embed_dim) packed embeddings. |
Source code in vllm/model_executor/models/lfm2_siglip2.py
resize_positional_embeddings_packed staticmethod ¶
resize_positional_embeddings_packed(
positional_embeddings: Tensor,
spatial_shapes: LongTensor,
lengths_list: list[int],
) -> Tensor
Resize positional embeddings per image and return a packed tensor.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
positional_embeddings | Tensor | (height, width, embed_dim) base grid. | required |
spatial_shapes | LongTensor | (batch_size, 2) on CPU, (height, width) per image. | required |
lengths_list | list[int] | flattened token length per image (height * width). | required |
Returns:
| Type | Description |
|---|---|
Tensor | (total_tokens, embed_dim) packed positional embeddings, concatenated |
Tensor | in the same order as |
Source code in vllm/model_executor/models/lfm2_siglip2.py
Siglip2VisionTransformer ¶
Bases: Module
Source code in vllm/model_executor/models/lfm2_siglip2.py
encoder instance-attribute ¶
encoder = Siglip2Encoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
)
__init__ ¶
__init__(
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
num_hidden_layers_override: int | None = None,
require_post_norm: bool | None = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/lfm2_siglip2.py
forward ¶
forward(
pixel_values_packed: FloatTensor,
spatial_shapes: LongTensor,
cu_seqlens: Tensor,
max_seqlen: Tensor,
select_layers: list[int] | None = None,
) -> Tensor
spatial_shapes (torch.LongTensor of shape (batch_size, 2)): Tensor containing the spatial dimensions (height, width) of the input images. select_layers (list[int] or None, defaults to None): Layer indices to select hidden states from. Supports negative indices (e.g., -1 for last layer, -2 for second-to-last). If None, returns the last layer output.