Skip to content

vllm.model_executor.models.step3p5_mtp

logger module-attribute

logger = init_logger(__name__)

SharedHead

Bases: Module

Source code in vllm/model_executor/models/step3p5_mtp.py
class SharedHead(nn.Module):
    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: QuantizationConfig | None = None,
    ) -> None:
        super().__init__()
        self.norm = GemmaRMSNorm(config.hidden_size, config.rms_norm_eps)
        self.head = ParallelLMHead(
            config.vocab_size, config.hidden_size, quant_config=quant_config
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return self.norm(hidden_states)

head instance-attribute

head = ParallelLMHead(
    vocab_size, hidden_size, quant_config=quant_config
)

norm instance-attribute

norm = GemmaRMSNorm(hidden_size, rms_norm_eps)

__init__

__init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
) -> None
Source code in vllm/model_executor/models/step3p5_mtp.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
) -> None:
    super().__init__()
    self.norm = GemmaRMSNorm(config.hidden_size, config.rms_norm_eps)
    self.head = ParallelLMHead(
        config.vocab_size, config.hidden_size, quant_config=quant_config
    )

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/step3p5_mtp.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    return self.norm(hidden_states)

Step3p5AMultiTokenPredictor

Bases: Module

Source code in vllm/model_executor/models/step3p5_mtp.py
class Step3p5AMultiTokenPredictor(nn.Module):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.mtp_start_layer_idx = config.num_hidden_layers
        self.num_mtp_layers = config.num_nextn_predict_layers
        # to map the exact layer index from weights
        self.layers = torch.nn.ModuleDict(
            {
                str(idx): Step3p5AMultiTokenPredictorLayer(
                    vllm_config,
                    f"{prefix}.layers.{idx}",
                )
                for idx in range(
                    self.mtp_start_layer_idx,
                    self.mtp_start_layer_idx + self.num_mtp_layers,
                )
            }
        )

        self.logits_processor = LogitsProcessor(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        previous_hidden_states: torch.Tensor,
        inputs_embeds: torch.Tensor | None = None,
        spec_step_idx: int = 0,
    ) -> torch.Tensor:
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        current_step_idx = spec_step_idx % self.num_mtp_layers
        return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
            input_ids,
            positions,
            previous_hidden_states,
            inputs_embeds,
            current_step_idx,
        )

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        spec_step_idx: int = 0,
    ) -> torch.Tensor:
        current_step_idx = spec_step_idx % self.num_mtp_layers
        mtp_layer = self.layers[str(self.mtp_start_layer_idx + current_step_idx)]
        logits = self.logits_processor(
            mtp_layer.shared_head.head, mtp_layer.shared_head(hidden_states)
        )
        return logits

    def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size
)

layers instance-attribute

layers = ModuleDict(
    {
        (str(idx)): (
            Step3p5AMultiTokenPredictorLayer(
                vllm_config, f"{prefix}.layers.{idx}"
            )
        )
        for idx in (
            range(
                mtp_start_layer_idx,
                mtp_start_layer_idx + num_mtp_layers,
            )
        )
    }
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

mtp_start_layer_idx instance-attribute

mtp_start_layer_idx = num_hidden_layers

num_mtp_layers instance-attribute

num_mtp_layers = num_nextn_predict_layers

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/step3p5_mtp.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    self.embed_tokens = VocabParallelEmbedding(
        config.vocab_size,
        config.hidden_size,
    )
    self.mtp_start_layer_idx = config.num_hidden_layers
    self.num_mtp_layers = config.num_nextn_predict_layers
    # to map the exact layer index from weights
    self.layers = torch.nn.ModuleDict(
        {
            str(idx): Step3p5AMultiTokenPredictorLayer(
                vllm_config,
                f"{prefix}.layers.{idx}",
            )
            for idx in range(
                self.mtp_start_layer_idx,
                self.mtp_start_layer_idx + self.num_mtp_layers,
            )
        }
    )

    self.logits_processor = LogitsProcessor(config.vocab_size)

compute_logits

compute_logits(
    hidden_states: Tensor, spec_step_idx: int = 0
) -> Tensor
Source code in vllm/model_executor/models/step3p5_mtp.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    spec_step_idx: int = 0,
) -> torch.Tensor:
    current_step_idx = spec_step_idx % self.num_mtp_layers
    mtp_layer = self.layers[str(self.mtp_start_layer_idx + current_step_idx)]
    logits = self.logits_processor(
        mtp_layer.shared_head.head, mtp_layer.shared_head(hidden_states)
    )
    return logits

embed_input_ids

embed_input_ids(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/step3p5_mtp.py
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    previous_hidden_states: Tensor,
    inputs_embeds: Tensor | None = None,
    spec_step_idx: int = 0,
) -> Tensor
Source code in vllm/model_executor/models/step3p5_mtp.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    previous_hidden_states: torch.Tensor,
    inputs_embeds: torch.Tensor | None = None,
    spec_step_idx: int = 0,
) -> torch.Tensor:
    if inputs_embeds is None:
        inputs_embeds = self.embed_tokens(input_ids)
    current_step_idx = spec_step_idx % self.num_mtp_layers
    return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
        input_ids,
        positions,
        previous_hidden_states,
        inputs_embeds,
        current_step_idx,
    )

Step3p5AMultiTokenPredictorLayer

Bases: Module

Source code in vllm/model_executor/models/step3p5_mtp.py
class Step3p5AMultiTokenPredictorLayer(nn.Module):
    def __init__(
        self,
        vllm_config: VllmConfig,
        prefix: str,
    ) -> None:
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.enorm = GemmaRMSNorm(config.hidden_size, config.rms_norm_eps)
        self.hnorm = GemmaRMSNorm(config.hidden_size, config.rms_norm_eps)
        self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
        self.shared_head = SharedHead(config=config, quant_config=quant_config)
        self.mtp_block = Step3p5DecoderLayer(
            vllm_config,
            prefix=f"{prefix}.mtp_block",
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        previous_hidden_states: torch.Tensor,
        inputs_embeds: torch.Tensor | None = None,
        spec_step_index: int = 0,
    ) -> torch.Tensor:
        assert inputs_embeds is not None
        inputs_embeds = self.enorm(inputs_embeds)
        previous_hidden_states = self.hnorm(previous_hidden_states)

        hidden_states = self.eh_proj(
            torch.cat([inputs_embeds, previous_hidden_states], dim=-1)
        )

        hidden_states = self.mtp_block(positions=positions, hidden_states=hidden_states)
        return hidden_states

eh_proj instance-attribute

eh_proj = Linear(hidden_size * 2, hidden_size, bias=False)

enorm instance-attribute

enorm = GemmaRMSNorm(hidden_size, rms_norm_eps)

hnorm instance-attribute

hnorm = GemmaRMSNorm(hidden_size, rms_norm_eps)

mtp_block instance-attribute

mtp_block = Step3p5DecoderLayer(
    vllm_config, prefix=f"{prefix}.mtp_block"
)

shared_head instance-attribute

shared_head = SharedHead(
    config=config, quant_config=quant_config
)

__init__

__init__(vllm_config: VllmConfig, prefix: str) -> None
Source code in vllm/model_executor/models/step3p5_mtp.py
def __init__(
    self,
    vllm_config: VllmConfig,
    prefix: str,
) -> None:
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.enorm = GemmaRMSNorm(config.hidden_size, config.rms_norm_eps)
    self.hnorm = GemmaRMSNorm(config.hidden_size, config.rms_norm_eps)
    self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
    self.shared_head = SharedHead(config=config, quant_config=quant_config)
    self.mtp_block = Step3p5DecoderLayer(
        vllm_config,
        prefix=f"{prefix}.mtp_block",
    )

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    previous_hidden_states: Tensor,
    inputs_embeds: Tensor | None = None,
    spec_step_index: int = 0,
) -> Tensor
Source code in vllm/model_executor/models/step3p5_mtp.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    previous_hidden_states: torch.Tensor,
    inputs_embeds: torch.Tensor | None = None,
    spec_step_index: int = 0,
) -> torch.Tensor:
    assert inputs_embeds is not None
    inputs_embeds = self.enorm(inputs_embeds)
    previous_hidden_states = self.hnorm(previous_hidden_states)

    hidden_states = self.eh_proj(
        torch.cat([inputs_embeds, previous_hidden_states], dim=-1)
    )

    hidden_states = self.mtp_block(positions=positions, hidden_states=hidden_states)
    return hidden_states

Step3p5MTP

Bases: Module

Source code in vllm/model_executor/models/step3p5_mtp.py
class Step3p5MTP(nn.Module):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        self.config = vllm_config.model_config.hf_config
        self.vllm_config = vllm_config
        self.model = Step3p5AMultiTokenPredictor(
            vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
        )

    def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.embed_input_ids(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        spec_step_idx: int = 0,
    ) -> torch.Tensor:
        hidden_states = self.model(
            input_ids, positions, hidden_states, inputs_embeds, spec_step_idx
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        spec_step_idx: int = 0,
    ) -> torch.Tensor | None:
        return self.model.compute_logits(hidden_states, spec_step_idx)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        expert_params_mapping = [
            (".moe.experts.w13_weight", ".moe.gate_proj.weight", "w1"),
            (".moe.experts.w13_weight", ".moe.up_proj.weight", "w3"),
            (".moe.experts.w2_weight", ".moe.down_proj.weight", "w2"),
        ]

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
            if "embed_tokens" not in name and spec_layer is None:
                continue
            name = self._rewrite_spec_layer_name(spec_layer, name)
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                if "experts" in name or "moe" in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    # Skip loading extra bias for GPTQ models.
                    if (
                        name.endswith(".bias") or name.endswith("_bias")
                    ) and name not in params_dict:
                        continue
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    for expert_id in range(loaded_weight.shape[0]):
                        loaded_weight_expert = loaded_weight[expert_id]
                        weight_loader(
                            param,
                            loaded_weight_expert,
                            name,
                            shard_id=shard_id,
                            expert_id=expert_id,
                        )
                    loaded_params.add(name)
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if (
                        name.endswith(".bias")
                        and name not in params_dict
                        or "tok_embeddings" in name
                    ):
                        continue

                    if spec_layer is not None and ".transformer." in name:
                        name = name.replace(".transformer.", ".")
                    if "shared_head" in name:
                        name = name.replace("shared_head.output", "shared_head.head")
                    if "embed_tokens" in name:
                        assert (
                            hasattr(self.config, "num_nextn_predict_layers")
                            and self.config.num_nextn_predict_layers > 0
                        )
                        name = "model.embed_tokens.weight"
                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        params_need_to_load = set(params_dict.keys())
        # Some KV cache scales are optional: checkpoints may omit them and vLLM
        # will fall back to default scales during initialization.
        optional_params = {
            name
            for name, param in params_dict.items()
            if name.endswith((".k_scale", ".v_scale", ".q_scale", ".prob_scale"))
            and getattr(param, "numel", lambda: 0)() == 1
            and getattr(param, "requires_grad", False) is False
        }
        params_need_to_load -= optional_params
        if params_need_to_load != loaded_params:
            missing_params = list(params_need_to_load - loaded_params)
            param_name_example = missing_params[0]
            raise RuntimeError(
                "Some parameters like "
                f"{param_name_example} are not in the checkpoint and will falsely "
                "use random initialization"
            )
        return loaded_params

    def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
        """
        Rewrite the weight name to match the format of the original model.
        Add .mtp_block for modules in transformer layer block for spec layer
        """
        spec_layer_weight_names = [
            "embed_tokens",
            "enorm",
            "hnorm",
            "eh_proj",
            "shared_head",
        ]
        spec_layer_weight = False
        for weight_name in spec_layer_weight_names:
            if weight_name in name:
                spec_layer_weight = True
                break
        if not spec_layer_weight:
            # treat rest weights as weights for transformer layer block
            name = name.replace(
                f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
            )
        return name

config instance-attribute

config = hf_config

model instance-attribute

model = Step3p5AMultiTokenPredictor(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/step3p5_mtp.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    self.config = vllm_config.model_config.hf_config
    self.vllm_config = vllm_config
    self.model = Step3p5AMultiTokenPredictor(
        vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
    )

_rewrite_spec_layer_name

_rewrite_spec_layer_name(spec_layer: int, name: str) -> str

Rewrite the weight name to match the format of the original model. Add .mtp_block for modules in transformer layer block for spec layer

Source code in vllm/model_executor/models/step3p5_mtp.py
def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
    """
    Rewrite the weight name to match the format of the original model.
    Add .mtp_block for modules in transformer layer block for spec layer
    """
    spec_layer_weight_names = [
        "embed_tokens",
        "enorm",
        "hnorm",
        "eh_proj",
        "shared_head",
    ]
    spec_layer_weight = False
    for weight_name in spec_layer_weight_names:
        if weight_name in name:
            spec_layer_weight = True
            break
    if not spec_layer_weight:
        # treat rest weights as weights for transformer layer block
        name = name.replace(
            f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
        )
    return name

compute_logits

compute_logits(
    hidden_states: Tensor, spec_step_idx: int = 0
) -> Tensor | None
Source code in vllm/model_executor/models/step3p5_mtp.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    spec_step_idx: int = 0,
) -> torch.Tensor | None:
    return self.model.compute_logits(hidden_states, spec_step_idx)

embed_input_ids

embed_input_ids(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/step3p5_mtp.py
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.embed_input_ids(input_ids)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    hidden_states: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
    spec_step_idx: int = 0,
) -> Tensor
Source code in vllm/model_executor/models/step3p5_mtp.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: torch.Tensor | None = None,
    spec_step_idx: int = 0,
) -> torch.Tensor:
    hidden_states = self.model(
        input_ids, positions, hidden_states, inputs_embeds, spec_step_idx
    )
    return hidden_states

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/step3p5_mtp.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]

    expert_params_mapping = [
        (".moe.experts.w13_weight", ".moe.gate_proj.weight", "w1"),
        (".moe.experts.w13_weight", ".moe.up_proj.weight", "w3"),
        (".moe.experts.w2_weight", ".moe.down_proj.weight", "w2"),
    ]

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue
        spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
        if "embed_tokens" not in name and spec_layer is None:
            continue
        name = self._rewrite_spec_layer_name(spec_layer, name)
        for param_name, weight_name, shard_id in stacked_params_mapping:
            # Skip non-stacked layers and experts (experts handled below).
            if weight_name not in name:
                continue
            # We have mlp.experts[0].gate_proj in the checkpoint.
            # Since we handle the experts below in expert_params_mapping,
            # we need to skip here BEFORE we update the name, otherwise
            # name will be updated to mlp.experts[0].gate_up_proj, which
            # will then be updated below in expert_params_mapping
            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
            if ("mlp.experts." in name) and name not in params_dict:
                continue
            if "experts" in name or "moe" in name:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            for mapping in expert_params_mapping:
                param_name, weight_name, shard_id = mapping
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if (
                    name.endswith(".bias") or name.endswith("_bias")
                ) and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                for expert_id in range(loaded_weight.shape[0]):
                    loaded_weight_expert = loaded_weight[expert_id]
                    weight_loader(
                        param,
                        loaded_weight_expert,
                        name,
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                loaded_params.add(name)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if (
                    name.endswith(".bias")
                    and name not in params_dict
                    or "tok_embeddings" in name
                ):
                    continue

                if spec_layer is not None and ".transformer." in name:
                    name = name.replace(".transformer.", ".")
                if "shared_head" in name:
                    name = name.replace("shared_head.output", "shared_head.head")
                if "embed_tokens" in name:
                    assert (
                        hasattr(self.config, "num_nextn_predict_layers")
                        and self.config.num_nextn_predict_layers > 0
                    )
                    name = "model.embed_tokens.weight"
                param = params_dict[name]
                weight_loader = getattr(
                    param, "weight_loader", default_weight_loader
                )
                weight_loader(param, loaded_weight)
        loaded_params.add(name)
    params_need_to_load = set(params_dict.keys())
    # Some KV cache scales are optional: checkpoints may omit them and vLLM
    # will fall back to default scales during initialization.
    optional_params = {
        name
        for name, param in params_dict.items()
        if name.endswith((".k_scale", ".v_scale", ".q_scale", ".prob_scale"))
        and getattr(param, "numel", lambda: 0)() == 1
        and getattr(param, "requires_grad", False) is False
    }
    params_need_to_load -= optional_params
    if params_need_to_load != loaded_params:
        missing_params = list(params_need_to_load - loaded_params)
        param_name_example = missing_params[0]
        raise RuntimeError(
            "Some parameters like "
            f"{param_name_example} are not in the checkpoint and will falsely "
            "use random initialization"
        )
    return loaded_params