def safe_load_prompt_embeds(
model_config: "ModelConfig",
embed: bytes,
) -> torch.Tensor:
if not model_config.enable_prompt_embeds:
raise VLLMValidationError(
"You must set `--enable-prompt-embeds` to input `prompt_embeds`.",
parameter="prompt_embeds",
)
# Enable sparse tensor integrity checks to prevent out-of-bounds
# writes from maliciously crafted tensors
with torch.sparse.check_sparse_tensor_invariants():
tensor = torch.load(
BytesIO(pybase64.b64decode(embed, validate=True)),
weights_only=True,
map_location=torch.device("cpu"),
)
assert isinstance(tensor, torch.Tensor) and tensor.dtype in (
torch.float32,
torch.bfloat16,
torch.float16,
)
tensor = tensor.to_dense()
if tensor.dim() > 2:
tensor = tensor.squeeze(0)
assert tensor.dim() == 2
return tensor