OpenAI Realtime Client¶
Source https://github.com/vllm-project/vllm/blob/main/examples/online_serving/openai_realtime_client.py.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This script demonstrates how to use the vLLM Realtime WebSocket API to perform
audio transcription by uploading an audio file.
Before running this script, you must start the vLLM server with a realtime-capable
model, for example:
vllm serve mistralai/Voxtral-Mini-3B-Realtime-2602 --enforce-eager
Requirements:
- vllm with audio support
- websockets
- librosa
- numpy
The script:
1. Connects to the Realtime WebSocket endpoint
2. Converts an audio file to PCM16 @ 16kHz
3. Sends audio chunks to the server
4. Receives and prints transcription as it streams
"""
import argparse
import asyncio
import base64
import json
import librosa
import numpy as np
import websockets
from vllm.assets.audio import AudioAsset
def audio_to_pcm16_base64(audio_path: str) -> str:
"""
Load an audio file and convert it to base64-encoded PCM16 @ 16kHz.
"""
# Load audio and resample to 16kHz mono
audio, _ = librosa.load(audio_path, sr=16000, mono=True)
# Convert to PCM16
pcm16 = (audio * 32767).astype(np.int16)
# Encode as base64
return base64.b64encode(pcm16.tobytes()).decode("utf-8")
async def realtime_transcribe(audio_path: str, host: str, port: int, model: str):
"""
Connect to the Realtime API and transcribe an audio file.
"""
uri = f"ws://{host}:{port}/v1/realtime"
async with websockets.connect(uri) as ws:
# Wait for session.created
response = json.loads(await ws.recv())
if response["type"] == "session.created":
print(f"Session created: {response['id']}")
else:
print(f"Unexpected response: {response}")
return
# Validate model
await ws.send(json.dumps({"type": "session.update", "model": model}))
# Signal ready to start
await ws.send(json.dumps({"type": "input_audio_buffer.commit"}))
# Convert audio file to base64 PCM16
print(f"Loading audio from: {audio_path}")
audio_base64 = audio_to_pcm16_base64(audio_path)
# Send audio in chunks (4KB of raw audio = ~8KB base64)
chunk_size = 4096
audio_bytes = base64.b64decode(audio_base64)
total_chunks = (len(audio_bytes) + chunk_size - 1) // chunk_size
print(f"Sending {total_chunks} audio chunks...")
for i in range(0, len(audio_bytes), chunk_size):
chunk = audio_bytes[i : i + chunk_size]
await ws.send(
json.dumps(
{
"type": "input_audio_buffer.append",
"audio": base64.b64encode(chunk).decode("utf-8"),
}
)
)
# Signal all audio is sent
await ws.send(json.dumps({"type": "input_audio_buffer.commit", "final": True}))
print("Audio sent. Waiting for transcription...\n")
# Receive transcription
print("Transcription: ", end="", flush=True)
while True:
response = json.loads(await ws.recv())
if response["type"] == "transcription.delta":
print(response["delta"], end="", flush=True)
elif response["type"] == "transcription.done":
print(f"\n\nFinal transcription: {response['text']}")
if response.get("usage"):
print(f"Usage: {response['usage']}")
break
elif response["type"] == "error":
print(f"\nError: {response['error']}")
break
def main(args):
if args.audio_path:
audio_path = args.audio_path
else:
# Use default audio asset
audio_path = str(AudioAsset("mary_had_lamb").get_local_path())
print(f"No audio path provided, using default: {audio_path}")
asyncio.run(realtime_transcribe(audio_path, args.host, args.port, args.model))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Realtime WebSocket Transcription Client"
)
parser.add_argument(
"--model",
type=str,
default="mistralai/Voxtral-Mini-3B-Realtime-2602",
help="Model that is served and should be pinged.",
)
parser.add_argument(
"--audio_path",
type=str,
default=None,
help="Path to the audio file to transcribe.",
)
parser.add_argument(
"--host",
type=str,
default="localhost",
help="vLLM server host (default: localhost)",
)
parser.add_argument(
"--port",
type=int,
default=8000,
help="vLLM server port (default: 8000)",
)
args = parser.parse_args()
main(args)