Token Embed¶
Source https://github.com/vllm-project/vllm/tree/main/examples/pooling/token_embed.
Multi Vector Retrieval¶
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils.argparse_utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="BAAI/bge-m3",
runner="pooling",
enforce_eager=True,
)
return parser.parse_args()
def main(args: Namespace):
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM.
# You should pass runner="pooling" for embedding models
llm = LLM(**vars(args))
# Generate embedding. The output is a list of EmbeddingRequestOutputs.
outputs = llm.embed(prompts)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for prompt, output in zip(prompts, outputs):
embeds = output.outputs.embedding
print(len(embeds))
# Generate embedding for each token. The output is a list of PoolingRequestOutput.
outputs = llm.encode(prompts, pooling_task="token_embed")
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for prompt, output in zip(prompts, outputs):
multi_vector = output.outputs.data
print(multi_vector.shape)
if __name__ == "__main__":
args = parse_args()
main(args)
Multi Vector Retrieval Client¶
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Example online usage of Pooling API for multi vector retrieval.
Run `vllm serve <model> --runner pooling`
to start up the server in vLLM. e.g.
vllm serve BAAI/bge-m3
"""
import argparse
import requests
import torch
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
headers = {"User-Agent": "Test Client"}
response = requests.post(api_url, headers=headers, json=prompt)
return response
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--model", type=str, default="BAAI/bge-m3")
return parser.parse_args()
def main(args):
api_url = f"http://{args.host}:{args.port}/pooling"
model_name = args.model
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompt = {"model": model_name, "input": prompts}
pooling_response = post_http_request(prompt=prompt, api_url=api_url)
for output in pooling_response.json()["data"]:
multi_vector = torch.tensor(output["data"])
print(multi_vector.shape)
if __name__ == "__main__":
args = parse_args()
main(args)